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Short recap and learning targets

« Ultimate goal: compute the cross section for electron-proton scattering, starting with the easier case of

elastic scattering in various conditions

Learning targets

« Use the results from e¥e™ - pu*u~ to compute the matrix element for the QED part of ep scattering

Scattering at low energy of the incoming electron (E, < m, < My): Rutherford scattering

Scattering of relativistic electron with energy much smaller than the proton rest mass (m, < E, < M,):

Mott scattering

Impact of the proton charge and magnetic moment distributions (Form Factors): scattering at even

higher energies (m, < E,~M,)

How to measure the Form Factors — angular dependence and experimental considerations



Probing the structure of the proton

In e”p — e p scattering the nature of the interaction of the virtual photon with the proton depends

strongly on the photon wavelength

At very low electron energies A > r;,: the scattering is equivalent to that

from a “point-like” spin-less object

* Atlow electron energies 1 ~ 7;,: the scattering is equivalent to that from

an extended charged object

* At high electron energies 1 < r,: the wavelength is sufficiently short to

resolve the proton sub-structure. Scattering from constituent quarks

* At very high electron energies 1 < r,: the proton appears to be a sea of

quarks and gluons



Electron-proton scattering

* Electron-proton scattering can be used as a probe of the structure of the proton e~
* Two main topics e~

* e p — e p: elastic scattering (today)

* e p — e~ X:deep inelastic scattering (next week)

« We will first consider scattering from a point-like proton




Electron-proton scattering

Two ways to proceed (derivations of the formulas below in Section 6.5.4)

1. Perform QED calculation from scratch:

g 4
(1M77) = o7 [ ) - 2) + (- )P p)]

2. Take the results we derived from ete™ - u*u~

- p3)* + (p1 - Pa)? t* 4 u*
<|Mﬁ|2> — 9ot (p1 - P3) (P; D4) — 204 i
(p1 - D2) S

and use “Crossing Symmetry” to obtain the matrix element fore "y~ - e u~



Crossing symmetry

« We derived the Lorentz-invariant matrix element for e*e™ — u*u~ and we can now just “rotate” the

diagram to correspond to e"u~ — e~ u~ and apply the principle of crossing symmetry to write down the

matrix element

ete” = pru-
e’ \ P2 P, , 1

p1 — D|; P2 — —D%; D3 — Dy Pa — — Dy

Changes the spin-averaged matrix element for

e-et - upt » e e u
/ /

P1 P2 P3 P4 Pﬁ P> P3 Pﬁ; ;




Electron-proton scattering

* The calculated cross section is appropriate for scattering of two spin-half Dirac (i.e. point-like) particles

in the ultra-relativistic limit (E > m,, ,) where we obtained

e'e” = pru- ep ey
| 2\ 4(P1'P3)2+(P1'P4)2_ 4t2+u2 \ 4u2+52
Mp|") = 2e : =2et—— = 2e*———

(p1 - D2) S t

P1 = P1,P2 = —P3
P3 = Pa, P4 = —P2

« We will use this again in the discussion of “Deep Inelastic Scattering” of electrons from the quarks

within a proton next time

* Before doing so we will consider the scattering of electrons from the composite proton

* how do we know that the proton is not a fundamental “point-like” particle?



Electron-proton scattering

e - e m

p p M

* In this discussion we will not be able to use the ultra-relativistic limit and will require the general

expression for the matrix element (see Section 6.5.4):

8 4
<|Mfi|2> = (1 _ep3)4 [(D1 - P2) (03 - Pa) + (P1 - P4) (D2 - P3) — (P1 - P3IM? — (p1 - Pa)M?* + 2mM*M?]




General e”p — e p scattering allowing for proton recoil

* General description of scattering, where the proton recoil at an angle 7 is allowed

» Start from RH and LH helicity particle spinors

Ps3
¢ —S P1
U = N S€i¢ ’ Uy = N Cei¢ = ;.
k-c k-s D
k-sel® —k - cel® Dy
N=VETm, s=sin(8/2), c = cos(6/2), k==L Non-relativistic limit: k =0

Ultra-relativistic limit: k —» 1

2 2
Mg; = 2—2 [u(p3)y*u(p)lgumlu(p)y ulp)] = %je  Jp

Electron current j (‘;) Proton current j E/p)



Electron current

 The possible initial- and final-state electron spinors are:

initial — state electron: ¢ = 0,0 =0 final — state electron: ¢ = 0,60
1 0 C —S
up(p1) =N [ 01}, u(p) =N 11, ur(p3) = N[ 5, uy(pz) =N €
k 0 kc ks
0 —k ks —kc
N, = E +m,
* Consider all four possible electron currents, i.e. helicitiesR - R,L - L,L - R,R — L:
- 2" .
e__-..’_.,.'/ jfﬁ =y (p3)y*ur(py) = (E + me)((k2 + 1)c, 2ks, +2iks, ch)
_ el
e..._‘f_;./ jé‘u = 4y (p3)y*u (py) = (E + mp)((k? + 1)c, 2ks, —2iks, 2kc)
_ 27E"
e————‘—:—b./' jétu = uy(p3)yHur(py) = (E + me)((l — kz)S, 0,0,0)

0 in the limitk —» 1
helicity=chirality

_ il
e....:t..,./' i = t(pa)y*u(py) = (E +m)((k? — 1)s,0,0,0) 10



Proton current

* In the relativistic limit (k = 1, E > m) the currents j,1; and j. 1 are 0 and only R = R and L — L currents

contribute to the cross section

1 0 Cy 5n
w(py, =0) = /ZMp 8 ,u(p, =0) = /ZMp (1) yUr(py) = /ZMp =Sy |, uy(ps) = /ZMp —Cp |,
0 0
0

0 0 0

* Giving for the proton currents

Jorr = —Jpu = +2My(c;,0,0,0)
Jjor, = Hipn = —2Mp(sy, 0,0,0)

* The spin-averaged matrix element summing over all 8 helicity states is then

4

le
(1Mp:]) = Zq—4M2(E +me)? - [c2 + s2] - [4(1 + k2)2c? + 4(1 — k?)?s?]



Spin-averaged matrix element Reworked equation from last

slide (derive as an exercise)

(1 = k)2 + 4k%c?)

2\ AMimge*(y, + 1)°
(Mg} =

q4-
We can use k = f eyi and (1 — £2)y? = 1 to obtain
2 16M2 , 0
<|Mfl-| > = [1 + BZyZ cos 2]

e Furthermore, in the t —channel: g% = (p; — p3)? = (0,p, — P3)? = —2p?(1 — cos 0) = —4p? sin4g

 Giving us the general expression for elastic electron-proton scattering this term vanishes in the
non-relativistic limit:
2 M 2 BeYe K1
<|Mfl-| > = [1 + B2yZ cos —]

p 51n4 >

12



Rutherford scattering

¢ Rutherford scattering is the low-energy (non-relativistic) limit where the recoil of the proton can be

neglected, and the electron is non-relativistic (5.7, < 1)

» Using the expression for the differential cross section in the lab frame

2
do 1 1 |M |2
dQ~ 64w2\M,, + E;(1 —cosf)) "
* Here the electron is non-relativistic E;~m, < M, and we can neglect E; in the denominator

do 1 |A1|2- e*m?
dQ ~ e4m2M2"T T 64n2|p|4sintg/2

 Writing e? = 4ma and the kinetic energy of the electron as Ex = p*/2m,

2

(da) B a
dQ/ jutherford  16EZsin%6/2




Rutherford scattering

2

(da) B a
dQ/ jutherford  16EZsin%6/2

This is the normal expression for the Rutherford cross section

We could derive it (and we did!) by considering the scattering of a non-relativistic particle in the static
Coulomb potential of the proton V (#) without any consideration of the interaction due to the intrinsic

magnetic moments of the electron and proton
Conclusion: in the non-relativistic limit, only the interaction between the particles” electric charges matter

No contribution from the magnetic (spin-spin) interaction

14



Mott scattering cross section

* For Rutherford scattering we are in the limit where the target recoil is neglected, and the scattered

particle is non-relativistic: Exy < m,

» For Mott scattering the target recoil is neglected but the scattered particle is relativistic: m, < E <
M, (i.e. we can neglect the electron mass)

* in this limit (E; = Yom,, BeYe > 1) the matrix element becomes:

2 B M2§€4 20
<|Mfl-| >— g COS >

2 gin4d 2
ET sin 0

Could have been derived from scattering of a relativistic

do a , 0
=  COS E electron off a spin-less nucleus
Mott 2cind N . C L !
° 4E 1S 2 (we haven't taken into account the charge distribution of the

proton yet)
15



Mott scattering cross section

 The final result for the Mott scattering cross section

(da) a’ , 0
— = ¥ COS™ —<
dQ/vote  4E£sin?0/2 2
~Rutherford formula QOverlap between initial- and
with Exy = E final-state wave function just
QM of spin-half

* Note: we could have derived this expression from scattering of electrons in a static potential from a fixed

point in space V(7). The interaction is electric rather than magnetic (spin-spin) in nature

* Last term arises from conservation of spin in the direction of motion for relativistic electrons

(helicity/angular momentum conservation)

» We still haven't taken into account the charge distribution of the proton

16



Form factors

» Consider the scattering of an electron in the static potential due to an extended charge distribution

- —/
V—J

 The potential at a distance 7 from the center is given by

Qp(¥)

41t|r — 7'

V(i) = L7 with | p@)d% =1 ;

* In first order perturbation theory the matrix element is given by

N i = > : 2 = > = > Qp(F,) N Ny
Mg = (Yr|V(P)|9h;) = je BT (#)etPrTd37 = jfe‘q ’”4an — d37d37
B jjeiﬁ'(F—F')eifl°f' () d37d3 7'
41t|r — 7'
» Fix #' and integrate over d37 with substitution R = # — #*
- Q - .= o
— ‘R 3 44 : 37T — 72
My = | ORI PR oG @ = (M), P



Form factors

* The resulting matrix element is equivalent to the matrix element for scattering from a point source

multiplied by the form factor
F@) = [ p@eldtas
* We then get for the Mott scattering cross section
2

do a 6
— . cos? —- |F(g?)|?
(dQ)Mott ” 4EZsin*6 /2 2 IF @)l

* Form factors are similar to diffraction of plane waves in optics

* The finite size of the scattering centre introduces a phase difference

between plane waves “scattered from different points in space”

Y

 If the wavelength is long compared to the size of the object all waves are

in phase and F(g?) = 1




Form factors: examples

point-like exponential Gaussian Uniform Fermi
0 (?) sphere function
F (c_jz) unity “dipole” Gaussian sinc-like
Dirac Particle  Proton 6Lj 40Ca

* Note: Form factor is unity for a point charge

19




Point-like Electron-proton ultra-relativistic elastic scattering

* So far, we have only considered protons which do not recoil. For E; > m, the general case is:
p, = (E1,0,0,E)

p, = (M,,0,0,0)

ps = (E3, 0, E3sinf, Ezcos6)

ooooooo

Py = (E4,Dq)

 Taking the equation from slide 8 with m = m, = 0 the matrix element is

ol 4
(1M7:1°) = =557 (@1 P2)Pa - P) + (21 - P2 - P2) = (b - )M

« Experimentally observe the scattered electron but not the proton so we need to eliminate p,
* The scalar products not involving p, are

p1 P2 = E1M), p1 - p3 = E1E3(1 — cosh), P2 ' p3 = E3M,



Point-like Electron-proton ultra-relativistic elastic scattering

« Using momentum conservation, we can eliminate p,: py = p1 +p2 — p3

D3 Pa =DP3 P1+P3 P2 — D3 P3 ~ E1E5(1 —cosB) + EsM,
D1 Da =D1°P1+ D1 D2 —P1P3 = E;M, — E;E3(1 — cosf)

* Substituting the scalar products in the expression for the matrix element from the last slide we get

8e*
<|Mﬁ-|2> = ———— M,E; E3|(E; — E3)(1 — cos8) + M, (1 + cosb)]
(p1 — p3)

884 .2 2
" (13" 2MpE; E3[(Ey — E3) sin® 6/2 + Mpcos®6 /2]

« Now obtain expression for q* = (p; — p3)* and (E; — E3)

q? = (py — p3)? = p? + p5 — 2p; - p3 = —2E E3(1 — cosB) = —4E;E5 sin? 8/2 < 0 (space-like)



Point-like Electron-proton ultra-relativistic elastic scattering

* For (E; — E3) we start from q - p, = (p; — p3) - p, = M(E{ — E3) and use

(q +p2)*=pi

q* +p; +2q-p, = p;

q* + M; +2q - p, = M}
= q-p2=—q°/2

* Hence the energy transferred to the proton is

qZ

El_E3=_ﬁ

» Note: we found that g? < 0 and therefore E; — E5 > 0 = the scattered electron always has lower energy

than the incoming one



Interpretation

* So far, we derived the differential cross-section for e "p — e p elastic scattering assuming point-like

Dirac spin-half particles. How should we interpret the equation ?

do a? Eq ,0 q* .0
— = _ : cos? = — ——=sin? =
A0~ 4EZsin%6/2 E, 2 " 2m2 > 2

* Compare with
2

do o , 0
C Y
d) Mott 16EKSIH 0/2 2

Note: Mott cross section is equivalent to scattering of spin-half electrons in a fixed electro-static
potential and the term E3/E; is due to the proton recoil

 The new term « sin? §/2: magnetic interaction due to spin-spin interaction

23



Interpretation

 The differential cross section from the previous slide depends on a single parameter 6!

» For an electron scattering at angle 6, both g% and E; are fixed by kinematics

_ZM(E]_ — E3) —_ _2E1E3(1 — COSH)

E, M
) —_— =
E;, M+ E{(1— cosf)

* S0, we can obtain for the exchanged momentum q2

2ME#(1 — cosf)
M + E{(1 — cosfO)

q° =




Interpretation

* Example: e7p = e "p at Epeam = 529.5 MeV, look at scattered electrons at 8 = 75°
E.B. Hughes et.al., Phys. Rev. 139 (1965) B458

* For elastic scattering we expect 3000
2500}
E:M
E3 —
M + E{(1 — cos0) i
>
529 3 1500+
E; = 938X = 373 MeV %
3 938 + 529(1 — cos75°) © >
3 1000r
500
« The energy identifies the scattering as elastic
0

529.50 MeV, 75° 1
q2+7.5 F-2 t;

(HYDROGEN UNCORRECTED )

L]
‘g Ve
. (TR
""" ' l ®

* We also know the squared four-momentum transfer

q

2=

2%x938%529%(1 — cos75°)
938 + 529(1 — cos75°)

1
360 370
SCATTERED ELECTRON ENERGY (MsV)

= 294 MeV?

25


https://journals.aps.org/pr/abstract/10.1103/PhysRev.139.B458

Elastic scattering from a finite-size proton

* In general, the finite size of the proton can be accounted for by introducing two structure functions
* Gg(g?): related to the charge distribution inside the proton

* Gy (g?): related to the distribution of the magnetic moment of the proton

* One can show that the ditferential cross section generalizes to the Rosenbluth formula:

do a? Eq (G,% + 1G4 0 9)

2 2 cin2
— = - cos“ —+ 216Gy sin“ =
dQ  4E?sin*9/2 E;\ 1+7 2 M=

with the Lorentz-invariant quantity T = —q?/4M? > 0



Elastic scattering from a finite-size proton

» Unlike our previous discussion of form factors, here the form factors are a function of g* rather than ¢*
and cannot simply be considered in terms of the Fourier Transformation of the charge and magnetic

moment distributions

 But we can relate them via g% = (E; — E3)? — G* and obtain

=i

2
* So for fﬁ « 1 we have g% =~ —¢? and G(¢?) = G(G?)



Elastic scattering from a finite-size proton

e In the limit g°/4M? « 1 we can interpret the structure functions in terms of the Fourier transformations

of the charge and magnetic moment distributions
Ge(a%) = Ge(@) = | p)elT7a%
6 (%) = Gu (@) = | u(DelT7 a7

* Note: in deriving the Rosenbluth formula we assumed that the proton was a spin-half Dirac particle, so

we expect for the magnetic moment of the proton

_>_35-.>
=M



Elastic scattering from a finite-size proton

* But the experimentally measured value of the proton magnetic moment was found to be larger than

what we expect for a point-like Dirac particle

e -
i=279—3§
H M

* So for the proton we expect:
Gg(0) = jp(?)eia'Fd3F =1

Gy(0) = J,u(?)d377 =l = +2.79

* The found anomalous magnetic moment of the proton is already evidence that it is not point-like!



Measuring G (g?) and Gy, (g?)

 Express the Rosenbluth formula as

+ 9 G2 N 2 6 h (dO') 0(2 E3 2 6
T an- — |,wnere | ——= = - . COS™ —
M2 dQ/)y 4E?sin*6/2 E; 2

da_(da) GE + 1G5
dQ  \dQ/,\ 147

the Mott cross-section including the proton recoil corresponds to scattering from a spin-0 proton

2

« Atverylow q%:1 = —fmz 0

do (da) C2(42
aa’ \gqa oN £(q°)

« Athighg%:t>» 1
i (da) (1+2 t ZH)GZ ?
an’\da/), vtan® o) Gia(a%)



Measuring G (g?) and Gy, (g?)

* In general, we are sensitive to both structure functions, which can be resolved from the angular

dependence of the cross section at fixed g?!
-
,.""‘.-_-“"l\

|
s \

dQ2

do

318 slope = 21G%,
— . __ ( Gz+1Gy
intercept = ( Tt

tan® 6 /2 .



Measuring G (g?) and Gy, (g?)

* Example: e™p —» e"p at Epeam = 529.5 MeV

* electron beam energies chosen to give certain values of g*

* cross section measured to 2 — 3%
E.B. Hughes et.al., Phys. Rev. 139 (1965) B458

PROTON

2.0} (/2 — 2()3 l\/IC\/2

31

do/dQ (cm?/STERADIAN)

PROTON
33 CROSS
SECTIONS

Il 1 1 1 1 & | 1 1 1 1 = 3

0 200 400 600 800 1000 0
INCIDENT ENERGY (MeV) 0 05 1.0

Experimentally we find:

Gu(q?) = 2.79G¢(q%)

the electric and magnetic form factors have

the same distribution!

32


https://journals.aps.org/pr/abstract/10.1103/PhysRev.139.B458

Higher energy electron-proton scattering

* Use electron beam the SLAC LINAC: 5 < Epeam < 20 GeV

‘Detect scattered electrons using the
“8 GeV Spectrometer”

DETECTOR
SHIELDING

bending magnets

s specr;oms TER cli\é\ \ \ ‘

| S B | LR

iz

i 2 2
High g2 — Measure G,;(g~)
S . . P.N.Kirk et.al., Phys. Rev. D 8 (1973) 63 33

PLAN VIEW HODOSCOPES


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.8.63

High g* results

Proton form factor
i —
Point-like proton \

N R S
-1
10 ¢ E
: | :
5
5
g2
2 (1 . 0.7lGeV2)
i 3 E
10.3:—
®
| R I
0 10 20 30

2
g°/GeV
A.F. Sill et.al., Phys. Rev. D 48 (1993) 29
R.C. Walker et.al., Phys. Rev. D 49 (1994) 5671

* The form factor fall rapidly with g*

 proton is not point-like

* decent fit (for low g?) to the data with “dipole form”

GP 1
Gh(qH) = 2=~
M 2.79 (1 + g2/0.71GeV?2)2

 Taking Fourier transformation, we find the spatial charge and

magnetic moment distribution (a = 0.24fm)

p(r) = poe~"/®
 corresponds to a rms charge radius 73,5 = 0.8 fm
« Although suggestive, does not imply proton is composite!
* Note: so far, we have only considered elastic scattering (inelastic

scattering next week! 34


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.48.29
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.49.5671

Summary of Lecture 9

Main learning outcomes

« How to obtain the cross section for elastic ep scattering starting
« starting from the QED process ete™ — pu*u~ and relating it to the QED part of ep scattering
 low-energy ep scattering: Rutherford
* high-energy ep scattering (no proton recoil): Mott

* considering proton recoil, spin-spin interaction, electric and magnetic Form Factors



