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Short recap and learning targets
• Ultimate goal: compute the cross section for electron-proton scattering, starting with the easier case of 

elastic scattering in various conditions

Learning targets

• Use the results from 𝑒!𝑒" → 𝜇!𝜇" to compute the matrix element for the QED part of 𝑒𝑝 scattering

• Scattering at low energy of the incoming electron (𝐸# ≪ 𝑚# ≪ 𝑀$): Rutherford scattering

• Scattering of relativistic electron with energy much smaller than the proton rest mass (𝑚# ≪ 𝐸# ≪ 𝑀$): 

Mott scattering

• Impact of the proton charge and magnetic moment distributions (Form Factors): scattering at even 

higher energies 𝑚# ≪ 𝐸#~𝑀$

• How to measure the Form Factors – angular dependence and experimental considerations 2



Probing the structure of the proton
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• At very low electron energies 𝜆 ≫ 𝑟$: the scattering is equivalent to that 

from a “point-like” spin-less object

• At low electron energies 𝜆 ∼ 𝑟$: the scattering is equivalent to that from 

an extended charged object

• At high electron energies 𝜆 < 𝑟$: the wavelength is sufficiently short to 

resolve the proton sub-structure. Scattering from constituent quarks

• At very high electron energies 𝜆 ≪ 𝑟$: the proton appears to be a sea of 

quarks and gluons

In 𝑒"𝑝 → 𝑒"𝑝 scattering the nature of the interaction of the virtual photon with the proton depends 

strongly on the photon wavelength



Electron-proton scattering

• Electron-proton scattering can be used as a probe of the structure of the proton

• Two main topics

• 𝑒!𝑝 → 𝑒!𝑝: elastic scattering (today)

• 𝑒!𝑝 → 𝑒!𝑋: deep inelastic scattering (next week)

• We will first consider scattering from a point-like proton
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Electron-proton scattering
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Two ways to proceed (derivations of the formulas below in Section 6.5.4)

1. Perform QED calculation from scratch:

2. Take the results we derived from 𝑒!𝑒" → 𝜇!𝜇"

        and use “Crossing Symmetry” to obtain the matrix element for 𝑒"𝜇" → 𝑒"𝜇" 

𝑀!"
# =

8𝑒$

𝑝% − 𝑝& $ 𝑝% ⋅ 𝑝# 𝑝& ⋅ 𝑝$ + 𝑝% ⋅ 𝑝$ 𝑝# ⋅ 𝑝&

𝑀!"
# = 2𝑒$

𝑝% ⋅ 𝑝& # + 𝑝% ⋅ 𝑝$ #

𝑝% ⋅ 𝑝# # ≡ 2𝑒$
𝑡# + 𝑢#

𝑠#



Crossing symmetry
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• We derived the Lorentz-invariant matrix element for 𝑒!𝑒" → 𝜇!𝜇" and we can now just “rotate” the 

diagram to correspond to 𝑒"𝜇" → 𝑒"𝜇" and apply the principle of crossing symmetry to write down the 

matrix element

Changes the spin-averaged matrix element for



Electron-proton scattering
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• The calculated cross section is appropriate for scattering of two spin-half Dirac (i.e. point-like) particles 

in the ultra-relativistic limit (𝐸 ≫ 𝑚#,	') where we obtained

• We will use this again in the discussion of “Deep Inelastic Scattering” of electrons from the quarks 

within a proton next time

• Before doing so we will consider the scattering of electrons from the composite proton

• how do we know that the proton is not a fundamental “point-like” particle?

𝑀!"
# = 2𝑒$

𝑝% ⋅ 𝑝& # + 𝑝% ⋅ 𝑝$ #

𝑝% ⋅ 𝑝# # ≡ 2𝑒$
𝑡# + 𝑢#

𝑠# ⟹ 2𝑒$
𝑢# + 𝑠#

𝑡#
𝑝" → 𝑝", 𝑝# → −𝑝$ 
𝑝$ → 𝑝%, 𝑝% → −𝑝# 



Electron-proton scattering
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• In this discussion we will not be able to use the ultra-relativistic limit and will require the general 

expression for the matrix element (see Section 6.5.4):

𝑀()
*
=

8𝑒+

𝑝, − 𝑝- + 𝑝, ⋅ 𝑝* 𝑝- ⋅ 𝑝+ + 𝑝, ⋅ 𝑝+ 𝑝* ⋅ 𝑝- − 𝑝, ⋅ 𝑝- 𝑀* − 𝑝, ⋅ 𝑝+ 𝑚* + 2𝑚*𝑀*



General 𝑒!𝑝 → 𝑒!𝑝 scattering allowing for proton recoil
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• General description of scattering, where the proton recoil at an angle 𝜂 is allowed

• Start from RH and LH helicity particle spinors

𝑢↑ = 𝑁
𝑐

𝑠𝑒()
𝑘 ⋅ 𝑐

𝑘 ⋅ 𝑠𝑒()

, 𝑢↓ = 𝑁
−𝑠
𝑐𝑒()
𝑘 ⋅ 𝑠

−𝑘 ⋅ 𝑐𝑒()

𝑁 = 𝐸 +𝑚, 𝑠 = sin 𝜃/2 , 𝑐 = cos(𝜃/2) , 	𝑘 = ,⃗
-./ = 01

1.2
Non-relativistic limit:  𝑘 → 0

Ultra-relativistic limit: 𝑘 → 1

𝑀!" =
𝑒#

𝑞# 4𝑢(𝑝&)𝛾'𝑢(𝑝%) 𝑔'( 4𝑢 𝑝$ 𝛾(𝑢(𝑝#) =
𝑒#

𝑞# 𝑗) ⋅ 𝑗*

𝑝*
𝑝+

Electron current 𝑗 &
' Proton current 𝑗 (

)



Electron current
• The possible initial- and final-state electron spinors are:

• Consider all four possible electron currents, i.e. helicities 𝑅 → 𝑅, 𝐿 → 𝐿, 𝐿 → 𝑅, 𝑅 → 𝐿:
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𝑗4↑↑
5 = :𝑢↑ 𝑝6 𝛾5𝑢↑ 𝑝2 = (𝐸 +𝑚4) 𝑘7 + 1 𝑐, 2𝑘𝑠, +2𝑖𝑘𝑠, 2𝑘𝑐  

𝑗4↓↓
5 = :𝑢↓ 𝑝6 𝛾5𝑢↓ 𝑝2 = (𝐸 +𝑚4) 𝑘7 + 1 𝑐, 2𝑘𝑠, −2𝑖𝑘𝑠, 2𝑘𝑐  

𝑗4↓↑
5 = :𝑢↓ 𝑝6 𝛾5𝑢↑ 𝑝2 = (𝐸 +𝑚4) 1 − 𝑘7 𝑠, 0,0,0  

𝑗4↑↓
5 = :𝑢↑ 𝑝6 𝛾5𝑢↓ 𝑝2 = 𝐸 +𝑚4 𝑘7 − 1 𝑠, 0,0,0  

𝑢↑ 𝑝% = 𝑁)
1
0
𝑘
0

, 𝑢↓ 𝑝% = 𝑁)
0
1
0
−𝑘

, 𝑢↑ 𝑝& = 𝑁)
𝑐
𝑠
𝑘𝑐
𝑘𝑠

, 𝑢↓(𝑝&) = 𝑁)
−𝑠
𝑐
𝑘𝑠
−𝑘𝑐

𝑁) = 𝐸 +𝑚)

initial − state	electron: 	𝜙 = 0, 𝜃 = 0 Hinal − state	electron: 	𝜙 = 0, 𝜃

0 in the limit 𝑘 → 1
helicity=chirality



Proton current
• In the relativistic limit 𝑘 = 1, 𝐸 ≫ 𝑚 	the	currents	𝑗#↑↓	and 𝑗#↓↑ are 0 and only 𝑅 → 𝑅 and 𝐿 → 𝐿 currents 

contribute to the cross section

• Giving for the proton currents

• The spin-averaged matrix element summing over all 8 helicity states is then
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𝑗$↑↑
0 = −𝑗$↓↓ = +2𝑀$ 𝑐1, 0,0,0  
𝑗$↑↓
0 = +𝑗$↓↑ = −2𝑀$ 𝑠1, 0,0,0  

𝑢↑ 𝑝* = 0 = 2𝑀$

1
0
0
0

, 𝑢↓ 𝑝* = 0 = 2𝑀$

0
1
0
0

, 𝑢↑ 𝑝+ = 2𝑀$

𝑐1
−𝑠1
0
0

, 𝑢↓ 𝑝+ = 2𝑀$

−𝑠1
−𝑐1
0
0

,	

𝑀!"
# =

1
4
𝑒$

𝑞$ 4𝑀*
# 𝐸 +𝑚)

# ⋅ 𝑐0# + 𝑠0# ⋅ 4 1 + 𝑘# #𝑐# + 4 1 − 𝑘# #𝑠#



Spin-averaged matrix element 

• Furthermore, in the 𝑡 −channel: 𝑞* = 𝑝, − 𝑝- * = 0, 𝑝⃗, − 𝑝⃗- * = −2𝑝* 1 − cos 𝜃 = −4𝑝* sin+ 2
*

• Giving us the general expression for elastic electron-proton scattering

12

We can use 𝑘 = 3!4!
4!!,

 and 1 − 𝛽#* 𝛾#* = 1 to obtain

𝑀I(
7
=
4𝑀,

7𝑚4
7𝑒J 𝛾4 + 1 7

𝑞J
⋅ 1 − 𝑘7 7 + 4𝑘7𝑐7

Reworked equation from last 
slide (derive as an exercise)

𝑀I(
7 =

16𝑀,
7𝑚4

7𝑒J

𝑞J
⋅ 1 + 𝛽47𝛾47 cos7

𝜃
2

𝑀I(
7 =

𝑀,
7𝑚4

7𝑒J

𝑝J sinJ 𝜃2
⋅ 1 + 𝛽47𝛾47 cos7

𝜃
2

this term vanishes in the 
non-relativistic limit: 

𝛽&𝛾& ≪ 1



Rutherford scattering
• Rutherford scattering is the low-energy (non-relativistic) limit where the recoil of the proton can be 

neglected, and the electron is non-relativistic (𝛽#𝛾# ≪ 1)

• Using the expression for the differential cross section in the lab frame

• Here the electron is non-relativistic 𝐸,~𝑚# ≪ 𝑀$ and we can neglect 𝐸, in the denominator

• Writing 𝑒* = 4𝜋𝛼 and the kinetic energy of the electron as 𝐸5 = 𝑝*/2𝑚#
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𝑑𝜎
𝑑Ω

=
1

64𝜋7
1

𝑀, + 𝐸2(1 − cos𝜃)

7

𝑀I(
7

𝑑𝜎
𝑑Ω

=
1

64𝜋7𝑀,
7 𝑀I(

7 =
𝑒J𝑚4

7

64𝜋7 𝑝⃗ JsinJ𝜃/2

𝑑𝜎
𝑑Ω OPQRSTUVTW

=
𝛼7

16𝐸X7sinJ𝜃/2



Rutherford scattering

• This is the normal expression for the Rutherford cross section

• We could derive it (and we did!) by considering the scattering of a non-relativistic particle in the static 

Coulomb potential of the proton 𝑉(𝑟) without any consideration of the interaction due to the intrinsic 

magnetic moments of the electron and proton

• Conclusion: in the non-relativistic limit, only the interaction between the particles’ electric charges matter

• No contribution from the magnetic (spin-spin) interaction
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𝑑𝜎
𝑑Ω OPQRSTUVTW

=
𝛼7

16𝐸X7sinJ𝜃/2



Mott scattering cross section

• For Rutherford scattering we are in the limit where the target recoil is neglected, and the scattered 

particle is non-relativistic: 𝐸5 ≪ 𝑚#

• For Mott scattering the target recoil is neglected but the scattered particle is relativistic: 𝑚# ≪ 𝐸 ≪

𝑀$(i.e. we can neglect the electron mass) 

• in this limit (𝐸" = 𝛾&𝑚& , 𝛽&𝛾& ≫ 1) the matrix element becomes:
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𝑀I(
7 =

𝑀,
7𝑒J

𝐸27 sinJ
𝜃
2
⋅ cos7

𝜃
2

𝑑𝜎
𝑑Ω \VQQ

=
𝛼7

4𝐸27sinJ
𝜃
2
⋅ cos7

𝜃
2

Could have been derived from scattering of a relativistic 

electron off a spin-less nucleus 

(we haven`t taken into account the charge distribution of the 

proton yet)



Mott scattering cross section

• The final result for the Mott scattering cross section

• Note: we could have derived this expression from scattering of electrons in a static potential from a fixed 

point in space 𝑉(𝑟). The interaction is electric rather than magnetic (spin-spin) in nature

• Last term arises from conservation of spin in the direction of motion for relativistic electrons 

(helicity/angular momentum conservation)

• We still haven`t taken into account the charge distribution of the proton
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𝑑𝜎
𝑑Ω \VQQ

=
𝛼7

4𝐸X7sinJ𝜃/2
	 ⋅ 	 cos7

𝜃
2

≈Rutherford formula 
with 𝐸* = 𝐸

Overlap between initial- and 
final-state wave function just 

QM of spin-half



Form factors
• Consider the scattering of an electron in the static potential due to an extended charge distribution

• The potential at a distance 𝑟 from the center is given by

• In first order perturbation theory the matrix element is given by

• Fix 𝑟6 and integrate over 𝑑-𝑟 with substitution 𝑅 = 𝑟 − 𝑟6
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𝑉 𝑟 = E
𝑄𝜌 𝑟

4𝜋 𝑟 − 𝑟^
𝑑6𝑟^ 	with	 E𝜌 𝑟 𝑑6𝑟 = 1

𝑀I( = 𝜓I 𝑉 𝑟 𝜓( = E𝑒_(,⃗!⋅a⃗𝑉 𝑟 𝑒.(,⃗"⋅a⃗𝑑6𝑟 = EE𝑒(b⋅a⃗
𝑄𝜌 𝑟^

4𝜋 𝑟 − 𝑟^
𝑑6𝑟𝑑6𝑟^

= EE𝑒(b⋅ a⃗_a⃗# 𝑒(b⋅a⃗#
𝑄𝜌 𝑟^

4𝜋 𝑟 − 𝑟^
𝑑6𝑟𝑑6𝑟^

𝑀I( = E𝑒(b⋅c
𝑄

4𝜋 𝑅
𝑑6𝑅E𝜌 𝑟^ 𝑒(b⋅a⃗#𝑑6𝑟^ = 𝑀I( dVefQ𝐹(𝑞⃗

7)



Form factors
• The resulting matrix element is equivalent to the matrix element for scattering from a point source 

multiplied by the form factor

• We then get for the Mott scattering cross section

• Form factors are similar to diffraction of plane waves in optics
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𝐹 𝑞⃗7 = E𝜌 𝑟 𝑒(b⋅a⃗𝑑6𝑟

𝑑𝜎
𝑑Ω \VQQ

→
𝛼7

4𝐸X7sinJ𝜃/2
⋅ cos7

𝜃
2
⋅ 𝐹 𝑞⃗7 7

• The finite size of the scattering centre introduces a phase difference 

between plane waves “scattered from different points in space”

• If the wavelength is long compared to the size of the object all waves are 

in phase and 𝐹 𝑞⃗* = 1



Form factors: examples

• Note: Form factor is unity for a point charge

19



Point-like Electron-proton ultra-relativistic elastic scattering
• So far, we have only considered protons which do not recoil. For 𝐸, ≫ 𝑚# the general case is:

• Taking the equation from slide 8 with 𝑚 = 𝑚# = 0 the matrix element is

• Experimentally observe the scattered electron but not the proton so we need to eliminate 𝑝+

• The scalar products not involving 𝑝+ are
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𝑝, = 𝐸,, 0,0, 𝐸, 	

𝑝* = 𝑀$, 0,0,0 	

𝑝- = 𝐸-, 0, 𝐸-sin𝜃, 𝐸-cos𝜃  

𝑝+ = 𝐸+, 𝑝⃗+  

𝑝, ⋅ 𝑝* = 𝐸,𝑀$, 	 𝑝, ⋅ 𝑝- = 𝐸,𝐸- 1 − cos𝜃 , 	 𝑝* ⋅ 𝑝- = 𝐸-𝑀$

𝑀()
* =

8𝑒+

𝑝, − 𝑝- + 𝑝, ⋅ 𝑝* 𝑝- ⋅ 𝑝+ + 𝑝, ⋅ 𝑝+ 𝑝* ⋅ 𝑝- − 𝑝, ⋅ 𝑝- 𝑀$
*



Point-like Electron-proton ultra-relativistic elastic scattering
• Using momentum conservation, we can eliminate 𝑝+: 	 𝑝+ = 𝑝, + 𝑝* − 𝑝-

• Substituting the scalar products in the expression for the matrix element from the last slide we get

• Now obtain expression for 𝑞+ = 𝑝, − 𝑝- +	and	(𝐸, − 𝐸-)
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𝑝- ⋅ 𝑝+ = 𝑝- ⋅ 𝑝, + 𝑝- ⋅ 𝑝* − 𝑝- ⋅ 𝑝- ≈ 𝐸,𝐸- 1 − cos𝜃 + 𝐸-𝑀$

𝑝, ⋅ 𝑝+ = 𝑝, ⋅ 𝑝, + 𝑝, ⋅ 𝑝* − 𝑝, ⋅ 𝑝- ≈ 𝐸,𝑀$ − 𝐸,𝐸- 1 − cos𝜃

𝑀()
*
=

8𝑒+

𝑝, − 𝑝- +𝑀$𝐸,𝐸- 𝐸, − 𝐸- 1 − cos𝜃 + 𝑀$(1 + cos𝜃)

𝑞* = 𝑝, − 𝑝- * = 𝑝,* + 𝑝-* − 2𝑝, ⋅ 𝑝- = −2𝐸,𝐸- 1 − cos𝜃 = −4𝐸,𝐸- sin* 𝜃/2	< 0	(space-like)

=
8𝑒+

𝑝, − 𝑝- + 2𝑀$𝐸,𝐸- 𝐸, − 𝐸- sin* 𝜃/2 + 𝑀$cos*𝜃/2



Point-like Electron-proton ultra-relativistic elastic scattering
• For (𝐸, − 𝐸-) we start from 𝑞 ⋅ 𝑝* = 𝑝, − 𝑝- ⋅ 𝑝* = 𝑀(𝐸, − 𝐸-) and use

• Hence the energy transferred to the proton is

• Note: we found that 𝑞* < 0 and therefore 𝐸, − 𝐸- > 0 ⟹ the scattered electron always has lower energy 

than the incoming one
22

𝑞 + 𝑝* * = 𝑝+*	

 𝑞* + 𝑝** + 2𝑞 ⋅ 𝑝* = 𝑝+*	

𝑞* +𝑀$
* + 2𝑞 ⋅ 𝑝* = 𝑀$

*	

                 ⟹ 𝑞 ⋅ 𝑝* = −𝑞*/2	

𝐸% − 𝐸& = −
𝑞#

2𝑀



Interpretation
• So far, we derived the differential cross-section for 𝑒"𝑝 → 𝑒"𝑝 elastic scattering assuming point-like 

Dirac spin-half particles. How should we interpret the equation ?

• Compare with

• The new term ∝ sin* 𝜃/2: magnetic interaction due to spin-spin interaction
23

𝑑𝜎
𝑑Ω \VQQ

=
𝛼7

16𝐸X7sinJ𝜃/2
⋅ cos7

𝜃
2

𝑑𝜎
𝑑Ω

=
𝛼7

4𝐸7sinJ𝜃/2
⋅
𝐸6
𝐸2

cos7
𝜃
2
−

𝑞7

2𝑀7 sin
7 𝜃
2

Note: Mott cross section is equivalent to scattering of spin-half electrons in a fixed electro-static 
potential and the term 𝐸-/𝐸, is due to the proton recoil 



Interpretation

• The differential cross section from the previous slide depends on a single parameter 𝜽!

• For an electron scattering at angle 𝜃, both 𝑞* and 𝐸- are fixed by kinematics 

• So, we can obtain for the exchanged momentum 𝑞*
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𝑞7 = −
2𝑀𝐸27(1 − cos𝜃)
𝑀 + 𝐸2(1 − cos𝜃)

−2𝑀 𝐸2 − 𝐸6 = −2𝐸2𝐸6 1 − cos𝜃

⟹
𝐸6
𝐸2
=

𝑀
𝑀 + 𝐸2 1 − cos𝜃



Interpretation

• Example: 𝑒"𝑝 → 𝑒"𝑝 at 𝐸789: = 529.5	MeV, look at scattered electrons at 𝜃 = 75∘

• For elastic scattering we expect

• The energy identifies the scattering as elastic

• We also know the squared four-momentum transfer
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𝑞7 = −
2×938×5297 1 − cos75∘

938 + 529 1 − cos75∘
= 294	MeV7

𝐸- =
𝐸,𝑀

𝑀 + 𝐸, 1 − cos𝜃

𝐸- = 938×
529

938 + 529 1 − cos75∘ = 373	MeV

E.B. Hughes et.al., Phys. Rev. 139 (1965) B458

https://journals.aps.org/pr/abstract/10.1103/PhysRev.139.B458


Elastic scattering from a finite-size proton

• In general, the finite size of the proton can be accounted for by introducing two structure functions

• 𝐺+ 𝑞# : related to the charge distribution inside the proton

• 𝐺, 𝑞# : related to the distribution of the magnetic moment of the proton

• One can show that the differential cross section generalizes to the Rosenbluth formula:

    with the Lorentz-invariant quantity 𝜏 = −𝑞*/4𝑀* > 0

26

𝑑𝜎
𝑑Ω

=
𝛼7

4𝐸27sinJ𝜃/2
⋅
𝐸6
𝐸2

𝐺-7 + 𝜏𝐺j7

1 + 𝜏
cos7

𝜃
2
+ 2𝜏𝐺j7 sin7

𝜃
2



Elastic scattering from a finite-size proton

• Unlike our previous discussion of form factors, here the form factors are a function of 𝑞* rather than 𝑞⃗* 

and cannot simply be considered in terms of the Fourier Transformation of the charge and magnetic 

moment distributions

• But we can relate them via 𝑞* = 𝐸, − 𝐸- * − 𝑞⃗* and obtain

• So for <
"

+=" ≪ 1 we have 𝑞* ≈ −𝑞⃗* and 𝐺 𝑞* ≈ 𝐺(𝑞⃗*)

27

−𝑞⃗7 = 𝑞7 1 −
𝑞
2𝑀

7



Elastic scattering from a finite-size proton

• In the limit 𝑞*/4𝑀* ≪ 1 we can interpret the structure functions in terms of the Fourier transformations 

of the charge and magnetic moment distributions

• Note: in deriving the Rosenbluth formula we assumed that the proton was a spin-half Dirac particle, so 

we expect for the magnetic moment of the proton

28

𝜇⃗ =
𝑒
𝑀
𝑆

𝐺- 𝑞7 ≈ 𝐺- 𝑞⃗7 = E𝜌 𝑟 𝑒(b⋅a⃗𝑑6𝑟

𝐺j 𝑞7 ≈ 𝐺j 𝑞⃗7 = E𝜇 𝑟 𝑒(b⋅a⃗𝑑6𝑟



Elastic scattering from a finite-size proton

• But the experimentally measured value of the proton magnetic moment was found to be larger than 

what we expect for a point-like Dirac particle

• So for the proton we expect:

• The found anomalous magnetic moment of the proton is already evidence that it is not point-like!
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𝜇⃗ = 2.79
𝑒
𝑀 𝑆

𝐺- 0 = E𝜌 𝑟 𝑒(b⋅a⃗𝑑6𝑟 = 1

𝐺j 0 = E𝜇(𝑟)𝑑6𝑟 = 𝜇, = +2.79



Measuring 𝐺! 𝑞"  and 𝐺# 𝑞"

• Express the Rosenbluth formula as

    the Mott cross-section including the proton recoil corresponds to scattering from a spin-0 proton

• At very low 𝒒𝟐: 𝜏 = − <"

+=" ≈ 0

• At high 𝒒𝟐: 𝜏 ≫ 1
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𝑑𝜎
𝑑Ω =

𝑑𝜎
𝑑Ω k

𝐺-7 + 𝜏𝐺j7

1 + 𝜏 + 2𝜏𝐺j7 tan7
𝜃
2 ,where

𝑑𝜎
𝑑Ω k

=
𝛼7

4𝐸27sinJ𝜃/2
⋅
𝐸6
𝐸2
cos7

𝜃
2

𝑑𝜎
𝑑Ω

/
𝑑𝜎
𝑑Ω k

≈ 𝐺-7(𝑞7)

𝑑𝜎
𝑑Ω

/
𝑑𝜎
𝑑Ω k

≈ 1 + 2𝜏 tan7
𝜃
2
𝐺j7 (𝑞7)



Measuring 𝐺! 𝑞"  and 𝐺# 𝑞"
• In general, we are sensitive to both structure functions, which can be resolved from the angular 

dependence of the cross section at fixed 𝑞*!
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Measuring 𝐺! 𝑞"  and 𝐺# 𝑞"

• Example: 𝑒"𝑝 → 𝑒"𝑝 at 𝐸789: = 529.5	MeV

• electron beam energies chosen to give certain values of 𝑞#

• cross section measured to 2 − 3%
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E.B. Hughes et.al., Phys. Rev. 139 (1965) B458

Experimentally we find:

𝐺1 𝑞# = 2.79𝐺2(𝑞#)

the electric and magnetic form factors have 

the same distribution!

https://journals.aps.org/pr/abstract/10.1103/PhysRev.139.B458


Higher energy electron-proton scattering

• Use electron beam the SLAC LINAC: 5 < 𝐸789: < 20	GeV

33P.N.Kirk et.al., Phys. Rev. D 8 (1973) 63

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.8.63


High 𝒒𝟐 results
• The form factor fall rapidly with 𝑞*

• proton is not point-like

• decent fit (for low 𝑞#) to the data with “dipole form”

• Taking Fourier transformation, we find the spatial charge and 

magnetic moment distribution (𝑎 ≈ 0.24fm)

• corresponds to a rms charge radius 𝑟#$% ≈ 0.8	fm

• Although suggestive, does not imply proton is composite!

• Note: so far, we have only considered elastic scattering (inelastic 

scattering next week! 34A.F. Sill et.al., Phys. Rev. D 48 (1993) 29
R.C. Walker et.al., Phys. Rev. D 49 (1994) 5671

𝐺1
* 𝑞# =

𝐺1
*

2.79 ≈
1

1 + 𝑞#/0.71GeV# #

𝜌 𝑟 ≈ 𝜌;𝑒<=/?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.48.29
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.49.5671


Summary of Lecture 9

Main learning outcomes

• How to obtain the cross section for elastic 𝑒𝑝 scattering starting

• starting from the QED process 𝑒-𝑒! → 𝜇-𝜇! and relating it to the QED part of 𝑒𝑝 scattering

• low-energy 𝑒𝑝 scattering: Rutherford

• high-energy 𝑒𝑝 scattering (no proton recoil): Mott

• considering proton recoil, spin-spin interaction, electric and magnetic Form Factors
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